Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotoxicology ; 10(6): 720-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26581431

RESUMO

Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.


Assuntos
Proteínas Sanguíneas/metabolismo , Nanopartículas/química , Dióxido de Silício/sangue , Dióxido de Silício/química , Óxido de Zinco/sangue , Óxido de Zinco/química , Animais , Eletroforese em Gel de Poliacrilamida , Cinética , Masculino , Taxa de Depuração Metabólica , Nanopartículas/análise , Coroa de Proteína/metabolismo , Ratos , Ratos Wistar , Propriedades de Superfície
2.
Int J Nanomedicine ; 10: 4173-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170657

RESUMO

BACKGROUND: Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. MATERIALS AND METHODS: First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated (65)ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. RESULTS: We found that the liver was the major site of initial uptake of (65)ZnO ENPs. There was a time-dependent decrease in tissue levels of (65)Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. CONCLUSION: Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that diminished Kupffer cell organelle motion correlated with ZnO ENP-induced liver injury.


Assuntos
Células de Kupffer , Fígado , Nanopartículas Metálicas , Fagossomos/efeitos dos fármacos , Óxido de Zinco , Animais , Células de Kupffer/citologia , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/microbiologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Ratos , Ratos Wistar , Óxido de Zinco/química , Óxido de Zinco/toxicidade
3.
Part Fibre Toxicol ; 11: 44, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25183210

RESUMO

BACKGROUND: Nanoparticle pharmacokinetics and biological effects are influenced by several factors. We assessed the effects of amorphous SiO2 coating on the pharmacokinetics of zinc oxide nanoparticles (ZnO NPs) following intratracheal (IT) instillation and gavage in rats. METHODS: Uncoated and SiO2-coated ZnO NPs were neutron-activated and IT-instilled at 1 mg/kg or gavaged at 5 mg/kg. Rats were followed over 28 days post-IT, and over 7 days post-gavage. Tissue samples were analyzed for 65Zn radioactivity. Pulmonary responses to instilled NPs were also evaluated at 24 hours. RESULTS: SiO2-coated ZnO elicited significantly higher inflammatory responses than uncoated NPs. Pulmonary clearance of both 65ZnO NPs was biphasic with a rapid initial t1/2 (0.2 - 0.3 hours), and a slower terminal t1/2 of 1.2 days (SiO2-coated ZnO) and 1.7 days (ZnO). Both NPs were almost completely cleared by day 7 (>98%). With IT-instilled 65ZnO NPs, significantly more 65Zn was found in skeletal muscle, liver, skin, kidneys, cecum and blood on day 2 in uncoated than SiO2-coated NPs. By 28 days, extrapulmonary levels of 65Zn from both NPs significantly decreased. However, 65Zn levels in skeletal muscle, skin and blood remained higher from uncoated NPs. Interestingly, 65Zn levels in bone marrow and thoracic lymph nodes were higher from coated 65ZnO NPs. More 65Zn was excreted in the urine from rats instilled with SiO2-coated 65ZnO NPs. After 7 days post-gavage, only 7.4% (uncoated) and 6.7% (coated) of 65Zn dose were measured in all tissues combined. As with instilled NPs, after gavage significantly more 65Zn was measured in skeletal muscle from uncoated NPs and less in thoracic lymph nodes. More 65Zn was excreted in the urine and feces with coated than uncoated 65ZnO NPs. However, over 95% of the total dose of both NPs was eliminated in the feces by day 7. CONCLUSIONS: Although SiO2-coated ZnO NPs were more inflammogenic, the overall lung clearance rate was not affected. However, SiO2 coating altered the tissue distribution of 65Zn in some extrapulmonary tissues. For both IT instillation and gavage administration, SiO2 coating enhanced transport of 65Zn to thoracic lymph nodes and decreased transport to the skeletal muscle.


Assuntos
Exposição por Inalação , Nanopartículas/administração & dosagem , Dióxido de Silício/administração & dosagem , Dióxido de Silício/farmacocinética , Óxido de Zinco/administração & dosagem , Óxido de Zinco/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Meia-Vida , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Linfonodos/metabolismo , Masculino , Taxa de Depuração Metabólica , Músculo Esquelético/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Pneumonia/induzido quimicamente , Ratos , Ratos Wistar , Dióxido de Silício/síntese química , Dióxido de Silício/toxicidade , Distribuição Tecidual , Óxido de Zinco/análogos & derivados , Óxido de Zinco/síntese química , Óxido de Zinco/toxicidade
4.
Environ Sci Nano ; 1(2): 144-153, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24955241

RESUMO

Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer-by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO2 coating during their gas-phase synthesis. It is demonstrated that the SiO2 nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO2 on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage at a cellular level using human lymphoblastoid cells (TK6). Results indicate significantly lower DNA damage (>3 times) for the SiO2-coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...